Portal de Eventos CoPICT - UFSCar, XXVII CIC e XII CIDTI

Tamanho da fonte: 
BRASSINOSTERÓIDE E SUA APLICAÇÃO NA FITORREMEDIAÇÃO DE CÁDMIO (Cd)
Daniel Baron, Gabriel Antonio Bortoloti, Flávio Gabriel Bianchini

Última alteração: 2021-02-25

Resumo


O presente resumo versa sobre os avanços metodológicos preliminares obtidos durante a vigência do projeto de iniciação científica e o ‘estado-da-arte’ da fitorremediação de metais pesados por espécies pertencentes ao gênero Brassica. Durante os meses iniciais de vigência da bolsa [ago/2019 a jan/2020] foram realizados testes preliminares com semeadura realizada em papel germinativo e em fibra-de-coco, ambos com posterior acompanhamento do crescimento de plântulas de Brassica napus L. (colza). Aos sete dias após a semeadura foram realizadas análises de crescimento [número de folhas, diâmetro do colo, altura da parte aérea, comprimento de caule, massa de matéria fresca das partes aéreas (shoots) e das raízes (roots)] e análises da atividade enzimática da catalase em plântulas expostas a diferentes dosagens do metal pesado cádmio, Cd (0,0; 0,5; 1,0 nM). contudo, os dados obtidos não atenderam as pressuposições estatísticas. Devido a pandemia do novo coronavírus (COVID-19) e a consequente inviabilização da execução experimental presencial nos laboratórios da Universidade Federal de São Carlos, campus Lagoa do Sino (Buri/SP), nossa equipe de pesquisa optou por iniciar a redação de uma revisão bibliográfica sobre o assunto ‘fitorremediação de metais pesados por Brassica spp.,’ a partir de levantamento bibliográfico, leitura e interpretação das publicações e documentos mais recentes em relação ao assunto. A intensificação de atividades antropogênicas relacionadas a industrialização e agricultura acentuou a poluição ambiental por metais pesados, como o Cd, zinco (Zn), arsênio (As), chumbo (Pb), mercúrio (Hg) e cromo (Cr). A literatura reporta diferentes técnicas utilizadas para a descontaminação de solos, por exemplo, a fitorremediação, que se apresenta como uma alternativa sustentável, realizada ‘in situ’, em que se utiliza processos fisiológicos vegetais como a fitovolatilização [absorção e volatilização de metais pesados pelas plantas], fitoestabilização [habilidade em concentrar metais pesados na região radicular dos vegetais] e a fitoextração [reportada como a técnica mais importante para a fitorremediação, uma vez que os metais pesados são absorvidos e acumulados na parte radicular e aérea das plantas]. Muitas espécies vegetais são eficazes na fitorremediação de metais pesados, como plantas do gênero Brassica, considerado o mais importante da família botânica Brassicaceae, essencialmente por apresentar espécies de interesse agronômico, por exemplo, a Brassica oleraceae var. botritys (couve-flor), B. oleraceae var. capitata (repolho) e B. rapa subsp. rapa (nabo) e B. juncea (mostarda-marrom). A literatura indica que Brassica spp. apresentam características favoráveis para sua utilização na técnica de fitorremediação. As espécies deste gênero, como a colza e a mostarda-marrom, secretam ácidos orgânicos (ácido cítrico) e de quelantes (metalotioneínas, glutationa e fitoquelatinas) que auxiliam na absorção e atenuação dos efeitos de metais pesados como Zn, Cd, Cu, Pb, Ni e U no metabolismo vegetal. Portanto, Brassicas spp. se apresentam como espécies potencialmente fitorremediadoras de metais pesados.


Palavras-chave


absorção iônica; Brassica; fitorremediação; metais pesados; transporte-de-solutos.

Referências


REFERÊNCIAS - RELATÓRIO FINAL

Informamos que não houve o uso de citações no presente resumo, contudo segue abaixo a lista de referências do Relatório Final de Atividades, uma vez que nosso resumo foi redigido a partir do referido Relatório.

AHAMMED, G. J. et al. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere, v. 90, n. 11, p. 2645–2653, 2013.

AHAMMED, G. J. et al. Brassinosteroids in Plant Tolerance to Abiotic Stress. Journal of Plant Growth Regulation, n. March, 2020.

AHMAD, P.; NABI, G.; ASHRAF, M. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, v. 77, n. 1, p. 36–44, 2011.

ALI, T. et al. Phytoremediation of cadmium contaminated soil by auxin assisted bacterial inoculation. Asian Journal of Agriculture and Biology, v. 1, p. 79–84, 2013.

AMARI, T.; GHNAYA, T.; ABDELLY, C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, v. 111, p. 99–110, 2017.

ANURADHA, A.; RAO, S. S. R. The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant, Soil and Environment, v. 53, n. 11, p. 465–472, 2007.

ANWAR, A. et al. The physiological and molecular mechanism of brassinosteroid in response to stress : a review. Biological Research, p. 1–15, 2018.

BACHIEGA, P. et al. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chemistry, v. 190, p. 771–776, 2016.

BARON, D. et al. Evaluation of substrates on the emergence of “araticum-de-terra-fria” (Annona emarginata (Schltdl.) H. Rainer) Seedlings. Revista Brasileira de Fruticultura, v. 33, n. 2, p. 575–586, 2011.

CAMESELLE, C.; GOUVEIA, S. Phytoremediation of mixed contaminated soil enhanced with electric current. Journal of Hazardous Materials, v. 361, n. September 2017, p. 95–102, 2019.

CANAM, T. et al. Differential metabolite profiles and salinity tolerance between two genetically related brown-seeded and yellow-seeded Brassica carinata lines. Plant Science, v. 198, p. 17–26, 2013.

CASSINA, L. et al. Exogenous Cytokinin Treatments of an NI Hyper-Accumulator, Alyssum Murale, Grown in a Serpentine Soil: Implications for Phytoextraction. International Journal of Phytoremediation, v. 13, n. sup1, p. 90–101, 1 jan. 2011.

DA SILVA, A. A. et al. Phytoremediation potential of Salvinia molesta for arsenite contaminated water: role of antioxidant enzymes. Theoretical and Experimental Plant Physiology, v. 30, n. 4, p. 275–286, 2018.

DĄBROWSKA, G. et al. The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L. International Journal of Phytoremediation, v. 19, n. 7, p. 597–604, 3 jul. 2017.

EASLON, H. M.; BLOOM, A. J. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area. Applications in Plant Sciences, v. 2, n. 7, p. 1400033, 2014.

FENG, J. et al. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnology Journal, v. 16, n. 2, p. 558–571, 2018.

FU, D. HUI et al. Research progress and strategies for multifunctional rapeseed: A case study of China. Journal of Integrative Agriculture, v. 15, n. 8, p. 1673–1684, 2016.

HAC-WYDRO, K.; SROKA, A.; JABŁOŃSKA, K. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes. Colloids and Surfaces B: Biointerfaces, v. 143, p. 124–130, 2016.

HASAN, S. A.; HAYAT, S.; AHMAD, A. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, v. 84, n. 10, p. 1446–1451, 2011.

HAYAT, S. et al. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. v. 60, p. 33–41, 2007.

HE, D. et al. Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Science of the Total Environment, v. 654, p. 1364–1371, 2019.

JAKUBOWSKA, D. Plant Science The role of brassinosteroids in the regulation of the plasma membrane H + - ATPase and NADPH oxidase under cadmium stress. v. 264, n. May, p. 37–47, 2017.

JEEVANANTHAM, S. et al. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environmental Technology and Innovation, v. 13, p. 264–276, 2019.

KAPOOR, D.; KAUR, S.; BHARDWAJ, R. Physiological and Biochemical Changes in Brassica juncea Plants under Cd-Induced Stress. BioMed Research International, v. 2014, 2014.

KAR, M.; MISHRA, D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiology, v. 57, n. 2, p. 315–319, 1976.

KAUR, P. et al. Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environmental Science and Pollution Research, v. 24, n. 15, p. 13452–13465, 2017a.

KAUR, R. et al. Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L. Environmental Science and Pollution Research, v. 24, n. 1, p. 685–700, 2017b.

KHAN, K. Y. et al. Effect of humic acid amendment on cadmium bioavailability and accumulation by pak choi (Brassica rapa ssp. chinensis L.) to alleviate dietary toxicity risk. Archives of Agronomy and Soil Science, v. 63, n. 10, p. 1431–1442, 24 ago. 2017.

MA, Q. et al. Effects of cadmium stress on pakchoi (Brassica chinensis L.) growth and uptake of inorganic and organic nitrogenous compounds. Environmental and Experimental Botany, v. 137, n. 3, p. 49–57, 2017.

MOKARI-FIRUZSALARI, S. et al. The Combined Influence of Zinc and Epibrassinolide Increase Tolerance to Salt Stress in Brassica napus L. Russian Journal of Plant Physiology, v. 1, p. 1–10, 2018.

PATRA, D. K.; PRADHAN, C.; PATRA, H. K. Toxic metal decontamination by phytoremediation approach: Concept, challenges, opportunities and future perspectives. Environmental Technology and Innovation, v. 18, p. 100672, 2020.

PEIXOTO, P. H. P. et al. Aluminum Effects on Lipid Peroxidation and on the Activities of Enzymes of Oxidative Metabolism in Sorghum 1. Revista Brasileira de Fisiologia Vegetal, v. 11, n. 3, p. 137–143, 1999.

QIN, S. et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, v. 30, n. 2, p. 168–180, 2020.

RIZWAN, M. et al. Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Critical Reviews in Environmental Science and Technology, v. 46, n. 18, p. 1498–1528, 16 set. 2016.

RIZWAN, M. et al. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environmental Geochemistry and Health, v. 39, n. 2, p. 259–277, 2017.

RIZWAN, M. et al. Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, v. 631–632, p. 1175–1191, 2018.

ROSTAMI, S.; AZHDARPOOR, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere, v. 220, p. 818–827, 2019.

SANTOS, L. R.; BATISTA, B. L.; LOBATO, A. K. S. Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica, v. 56, n. 2, p. 591–605, 2018.

SARWAR, N. et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, v. 171, p. 710–721, 2017.

SHAH, V.; DAVEREY, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology and Innovation, v. 18, p. 100774, 2020.

SHARMILA, P. et al. Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma, v. 254, n. 2, p. 763–770, 2017.

SOARES, C. et al. Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, v. 161, n. July 2018, p. 4–25, 2019.

SOARES, T. F. S. N. et al. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. Ecotoxicology and Environmental Safety, v. 193, n. August 2019, p. 110296, 2020.

SU, D. C.; WONG, J. W. C. Selection of Mustard Oilseed Rape (Brassica juncea L.) for Phytoremediation of Cadmium Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, v. 72, n. 5, p. 991–998, 2004.

THAKUR, S.; CHOUDHARY, S.; BHARDWAJ, P. Comparative Transcriptome Profiling Under Cadmium Stress Reveals the Uptake and Tolerance Mechanism in Brassica juncea. Journal of Plant Growth Regulation, v. 0, n. 0, p. 0, 2019.

VÁZQUEZ, M. N. et al. Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Australian Journal of Crop Science, v. 13, n. 1, p. 115–121, 2019.

VERMA, K.; MEHTA, S. K.; SHEKHAWAT, G. S. Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: Cross-talk between ROS, NO and antioxidant responses. BioMetals, v. 26, n. 2, p. 255–269, 2013.

WANG, L. et al. A review on in situ phytoremediation of mine tailings. Chemosphere, v. 184, p. 594–600, 2017.

WANG, X. et al. Variations in cadmium accumulation and distribution among different oilseed rape cultivars in Chengdu Plain in China. n. 24, p. 3415–3427, 2018.

XIA, S. et al. Variations in the accumulation and translocation of cadmium among pak choi cultivars as related to root morphology. Environmental Science and Pollution Research, v. 23, n. 10, p. 9832–9842, 2016.

ZHANG, F.; XIAO, X.; WU, X. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). Ecotoxicology and Environmental Safety, v. 197, n. January, p. 110613, 2020.